662 research outputs found

    Modelling the combination of functional and logic programming languages

    Get PDF
    The combination of functional and pure Horn clause logic languages is formally introduced. To give a framework for the investigation of implementations we define a complete and consistent model, which retains full invertibility and allows separation of logic and control. Some existing implementations are discussed from this viewpoint. An extended unification algorithm is suggested, which incorporates the features demanded by our model

    Generalized Totalizer Encoding for Pseudo-Boolean Constraints

    Full text link
    Pseudo-Boolean constraints, also known as 0-1 Integer Linear Constraints, are used to model many real-world problems. A common approach to solve these constraints is to encode them into a SAT formula. The runtime of the SAT solver on such formula is sensitive to the manner in which the given pseudo-Boolean constraints are encoded. In this paper, we propose generalized Totalizer encoding (GTE), which is an arc-consistency preserving extension of the Totalizer encoding to pseudo-Boolean constraints. Unlike some other encodings, the number of auxiliary variables required for GTE does not depend on the magnitudes of the coefficients. Instead, it depends on the number of distinct combinations of these coefficients. We show the superiority of GTE with respect to other encodings when large pseudo-Boolean constraints have low number of distinct coefficients. Our experimental results also show that GTE remains competitive even when the pseudo-Boolean constraints do not have this characteristic.Comment: 10 pages, 2 figures, 2 tables. To be published in 21st International Conference on Principles and Practice of Constraint Programming 201

    Individual rules for trail pattern formation in Argentine ants (Linepithema humile)

    Get PDF
    We studied the formation of trail patterns by Argentine ants exploring an empty arena. Using a novel imaging and analysis technique we estimated pheromone concentrations at all spatial positions in the experimental arena and at different times. Then we derived the response function of individual ants to pheromone concentrations by looking at correlations between concentrations and changes in speed or direction of the ants. Ants were found to turn in response to local pheromone concentrations, while their speed was largely unaffected by these concentrations. Ants did not integrate pheromone concentrations over time, with the concentration of pheromone in a 1 cm radius in front of the ant determining the turning angle. The response to pheromone was found to follow a Weber's Law, such that the difference between quantities of pheromone on the two sides of the ant divided by their sum determines the magnitude of the turning angle. This proportional response is in apparent contradiction with the well-established non-linear choice function used in the literature to model the results of binary bridge experiments in ant colonies (Deneubourg et al. 1990). However, agent based simulations implementing the Weber's Law response function led to the formation of trails and reproduced results reported in the literature. We show analytically that a sigmoidal response, analogous to that in the classical Deneubourg model for collective decision making, can be derived from the individual Weber-type response to pheromone concentrations that we have established in our experiments when directional noise around the preferred direction of movement of the ants is assumed.Comment: final version, 9 figures, submitted to Plos Computational Biology (accepted

    Effects of group composition and level of selection in the evolution of cooperation in artificial ants

    Get PDF
    Since ants and other social insects have long generation time, it is very difficult for biologists to study the origin of complex social organization by guided evolution (a process where the evolution of a trait can be followed during experimental evolution). Here we use colonies of artificial ants implemented as small mobile robots with simple vision and communication abilities to explore these issues. In this paper, we present results concerning the role of relatedness (genetic similarity) and levels of selection (individual and colony-level selection) on the evolution of cooperation and division of labor in simulated ant colonies. In order to ensure thorough statistical analysis, the evolutionary experiments, herein reported, have been carried out using "minimalist" simulations of the collective robotics evolutionary setup. The results show that altruistic behaviors have low probability of emerging in heterogeneous colonies evolving under individual-level selection and that colonies with high genetic relatedness display better performance

    Recruitment Strategies and Colony Size in Ants

    Get PDF
    Ants use a great variety of recruitment methods to forage for food or find new nests, including tandem running, group recruitment and scent trails. It has been known for some time that there is a loose correlation across many taxa between species-specific mature colony size and recruitment method. Very small colonies tend to use solitary foraging; small to medium sized colonies use tandem running or group recruitment whereas larger colonies use pheromone recruitment trails. Until now, explanations for this correlation have focused on the ants' ecology, such as food resource distribution. However, many species have colonies with a single queen and workforces that grow over several orders of magnitude, and little is known about how a colony's organization, including recruitment methods, may change during its growth. After all, recruitment involves interactions between ants, and hence the size of the colony itself may influence which recruitment method is used—even if the ants' behavioural repertoire remains unchanged. Here we show using mathematical models that the observed correlation can also be explained by recognizing that failure rates in recruitment depend differently on colony size in various recruitment strategies. Our models focus on the build up of recruiter numbers inside colonies and are not based on optimality arguments, such as maximizing food yield. We predict that ant colonies of a certain size should use only one recruitment method (and always the same one) rather than a mix of two or more. These results highlight the importance of the organization of recruitment and how it is affected by colony size. Hence these results should also expand our understanding of ant ecology

    The microbiome of the ant-built home : the microbial communities of a tropical arboreal ant and its nest

    Get PDF
    Microbial life is ubiquitous, yet we are just beginning to understand how microbial communities are assembled. We test whether relationships between ant microbiomes and their environments resemble patterns identified in the human home microbiome. We examine the microbial communities and chemical composition of ants, their waste, their nest, and the surrounding soil. We predicted that the microbiome of the canopy ant, Azteca trigona, like that of humans, represents a distinct, relatively invariant, community compared to the soil community. Because Azteca build aboveground nests constructed from ant exudates mixed with chewed plant fibers, we predicted that nest-associated microorganisms should reflect their ants, not the surrounding environment. The ant microbiome was distinct from the soil, but contrary to initial predictions, ant microbiomes varied dramatically across colonies. This variation was largely driven by the relative abundance of Lactobacillus, a genus frequently associated with hymenopteran diets. Despite the origin of nests and their means of construction, nest-associated microorganisms were most similar to the surrounding soil. The microbiota of Azteca ants is thus distinct, but dimorphic across colonies, for reasons likely due to inter-colony differences in diet; microbiotas of the nests however mirror the surrounding soil community, similar to patterns of human home microbiota.This work was supported by the National Science Foundation (EF—1065844) to Michael Kaspari, the National Science Foundation Graduate Research Fellowship (2014170874) to Jane Lucas, Smithsonian Tropical Research Institute Short-Term Fellowship to Jane Lucas, and University of Oklahoma Biology Department Funds.Ye

    Terminal Investment: Individual Reproduction of Ant Queens Increases with Age

    Get PDF
    The pattern of age-specific fecundity is a key component of the life history of organisms and shapes their ecology and evolution. In numerous animals, including humans, reproductive performance decreases with age. Here, we demonstrate that some social insect queens exhibit the opposite pattern. Egg laying rates of Cardiocondyla obscurior ant queens increased with age until death, even when the number of workers caring for them was kept constant. Cardiocondyla, and probably also other ants, therefore resemble the few select organisms with similar age-specific reproductive investment, such as corals, sturgeons, or box turtles (e.g., [1]), but they differ in being more short-lived and lacking individual, though not social, indeterminate growth. Furthermore, in contrast to most other organisms, in which average life span declines with increasing reproductive effort, queens with high egg laying rates survived as long as less fecund queens

    Trail laying during tandem-running recruitment in the ant Temnothorax albipennis

    Get PDF
    Tandem running is a recruitment strategy whereby one ant leads a single naïve nest mate to a resource. While tandem running progresses towards the goal, the leader ant and the follower ant maintain contact mainly by tactile signals. In this paper, we investigated whether they also deposit chemical signals on the ground during tandem running. We filmed tandem-running ants and analysed the position of the gasters of leaders and followers. Our results show that leader ants are more likely to press their gasters down to the substrate compared to follower ants, single ants and transporter ants. Forward tandem-run leaders (those moving towards a new nest site) performed such trail-marking procedures three times more often than reverse tandem leaders (those moving towards an old nest site). That leader ants marked the trails more often during forward tandem runs may suggest that it is more important to maintain the bond with the follower ant on forward tandem runs than on reverse tandem runs. Marked trails on the ground may serve as a safety line that improves both the efficiency of tandem runs and their completion rates. © 2014 Springer-Verlag Berlin Heidelberg
    corecore